

Getting Started with CHP

Cheryl Eakle

Sustainability Engineer KPPC

CHP Technical Assistance Partnerships

Key Activities

- Market Opportunity Analysis
 Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors
 - Education and Outreach
 Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, end users, trade associations, and others.
- Providing technical assistance to endusers and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the development process from initial CHP screening to installation.

http://eere.energy.gov/manufacturing/distributed energy/chptaps.html

DOE CHP Technical Assistance Partnerships (CHP TAPs)

DOE CHP Technical Assistance Partnerships (TAPs): Program Contacts Claudia Tighe CHP Deployment Lead Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Phone: 202-287-1899

E-mail: claudia.tighe@ee.doe.gov

Jamey Evans
Project Officer, Golden Field Office
Office of Energy Efficiency and
Renewable Energy
U.S. Department of Energy
Phone: 720-356-1536
E-mail: jamey.evans@go.doe.gov

Patti Welesko Garland
CHP Technical Support Coordinator
Oak Ridge National Laboratory
Supporting, Office of Energy Efficiency
and Renewable Energy
U.S. Department of Energy
Phone: 202-586-3753
E-mail: garlandpw@oml.gov

Ted Bronson DOE CHP TAPs Coordinator Power Equipment Associates Supporting, Office of Energy Efficiency and Renewable Energy Phone: 630-248-8778 E-mail: tbronsonpea@aol.com

Where to start?

How can I determine if CHP is a good fit for my facility?

CHP TAP Technical Development Assistance

Screening and Preliminary Analysis

Feasibility Analysis Investment Grade Analysis

Procurement, Operations, Maintenance, Commissioning

Quick screening questions with spreadsheet payback calculator.

Uses available site

information.
Estimate: savings,
Installation costs,
simple paybacks,
equipment sizing
and type.

3rd Party review of Engineering Analysis. Review equipment sizing and choices.

Review specifications and bids, Limited operational analysis

Kentucky CHP TAP Qualification Screening

Reciprocating Gas CHP System - no power export from site

Facility Information

Facility Name Hospital Location (City, State) Somewhere, KY Application n-Patient Care **Annual Hours of Operation** Annual Electricity Consumption (kWh) 16,061,600 Average Power Demand (MW) 1.83 Annual Fuel Consumption (MMBtu) 53,953.00 Annual Thermal Demand (MMBtu) 43,162.4 2012-2013 Actual Fuel Consumption times ~ 80% efficiency Average Thermal Demand (MMBtu/hr) 4.9 Average Electricity Costs (\$/kWh) \$0.065 2012-2013 Average Electricity cost \$5.030 Thermal Fuel Costs (\$/MMBtu) 2012-2013 Average Fuel cost CHP Fuel Costs (\$/MMBtu) \$5.030 Percent Electric Price Avoided 80%

CHP System

Net CHP Power (MW) 1.20 CHP Electric Efficiency, % (HHV) 38.0% 4,260 CHP Thermal Output (Btu/kWh) CHP Power to Heat Ratio 0.80 Calculated based on CHP power output and thermal output CHP Availability (%) 95% 90 to 98% Incremental O&M Costs (\$/kWh) \$0.010 Displaced Thermal Efficiency (%) 80.0% Displaced onsite thermal (boiler, heater, etc) efficiency Thermal Utilization (%) 100.0% Amount of available thermal captured and used - typically 80 to 100

Stand-by Electric Required? (1=Yes, 0=No) Required Standby Capacity (kW) Standby Charge (\$/kW)

Effective Electric Cost

Effective Cost or "All-in Cost"

Total Electric Bill (\$)
Total Electric Use (kWh)

Reciprocating Gas CHP System - no power export from site

Facility Information

Facility Name

Location (City, State)

Application

Annual Hours of Operation

Annual Electricity Consumption (kWh)

Average Power Demand (MW)

Annual Fuel Consumption (MMBtu)

Annual Thermal Demand (MMBtu)

Average Thermal Demand (MMBtu/hr)

Average Electricity Costs (\$/kWh)

Thermal Fuel Costs (\$/MMBtu)

CHP Fuel Costs (\$/MMBtu)

Percent Electric Price Avoided

lospital	
omewhere, KY	
n-Patient Care	
8760	
15.051.500	
16,061,600	
1.83	
53,953.00	
43,162.4	2012-2013 A
4.9	

2012-2013 Actual Fuel Consumption times $^{\sim}$ 80% efficiency

\$0.065
\$5.030
\$5.030
80%

2012-2013 Average Electricity cost

2012-2013 Average Fuel cost

CHP System

Net CHP Power (MW)

CHP Electric Efficiency, % (HHV)

CHP Thermal Output (Btu/kWh)

CHP Power to Heat Ratio

CHP Availability (%)

Incremental O&M Costs (\$/kWh)

Displaced Thermal Efficiency (%)

Thermal Utilization (%)

Stand-by Electric Required? (1=Yes, 0=No)

Required Standby Capacity (kW)

Standby Charge (\$/kW)

1.20 38.0% 4,260 0.80 95% \$0.010 80.0%	
4,260 0.80 95% \$0.010 80.0%	 1.20
0.80 95% \$0.010 80.0%	38.0%
95% \$0.010 80.0%	4,260
\$0.010 80.0%	0.80
80.0%	95%
	\$0.010
100.0%	80.0%
100.0%	
	100.0%

O

Calculated based on CHP power output and thermal output 90 to 98%

Displaced onsite thermal (boiler, heater, etc) efficiency

Amount of available thermal captured and used - typically 80 to 100%

Annual Energy Consumption

Generated Electricity (kWh
Purchased Electricty (kWh)
CHP Thermal (MMBtu)
On-site Thermal (MMBtu)
Boiler Fuel (MMBtu)
CHP Fuel (MMBtu)
Total Fuel (MMBtu)

Base Case	
C	
16,061,600	۱
C	
43,162	
53,953	
0	۱
53,953	;

\$1,044,004

\$1,044,004

\$1,315,388

CHP Case
9,986,400
6,075,200
42,542
620
775
89,667
90,443

Annual Operating Costs

Purchased Electricity [Operating] (\$)	
Standby Electric Charges (\$)	
Total Electric Charges (\$)	
On-site Thermal Fuel (\$)	
CHP Fuel (\$)	
Incremental O&M (\$)	
Total Operating Costs (\$)	

\$524,711
\$0
\$524,711
\$3,900
\$451,027
\$99,864
 \$1,079,502

Simple Payback

Annual Operating Savings (\$)	\$235,
Installed Costs (\$/kW)	\$2,
Total Installed Costs (\$)	\$2,400,
Simple Payback, Years	1
•	

0

Operating Costs to Generate	
Fuel Costs (\$/kWh)	\$0.045
Thermal Credit (\$/kWh)	(\$0.027
Incremental O&M (\$/kWh)	\$0.010
Total Operating Costs to Generate (\$/kWh)	\$0.028

Annual Energy Consumption

	Base Case	CHP Case
Generated Electricity (kWh)	O	9,986,400
Purchased Electricty (kWh)	16,061,600	6,075,200
CHP Thermal (MMBtu)	0	42,542
On-site Thermal (MMBtu)	43,162	620
Boiler Fuel (MMBtu)	53,953	775
CHP Fuel (MMBtu)	O	89,667
Total Fuel (MMBtu)	53,953	90,443

Annual Operating Costs

Aimaa Operating costs		
Purchased Electricity [Operating] (\$)	\$1,044,004	\$524,711
Standby Electric Charges (\$)	\$0	\$0
Total Electric Charges (\$)	\$1,044,004	\$524,711
On-site Thermal Fuel (\$)	\$271,384	\$3,900
CHP Fuel (\$)	\$0	\$451,027
Incremental O&M (\$)	<u>\$0</u>	<u>\$99,864</u>
Total Operating Costs (\$)	\$1,315,388	\$1,079,502

Simple Payback

Annual	Operating Savings	(\$))
--------	-------------------	------	---

Installed Costs (\$/kW)

Total Installed Costs (\$)

Simple Payback, Years

\$235,885
\$2,000
\$2,400,000
10.2

Operating Costs to Generate

Fuel Costs (\$/kWh)

Thermal Credit (\$/kWh)

Incremental O&M (\$/kWh)

Total Operating	Costs to	Generate	(\$/kWh)
------------------------	----------	----------	----------

\$0.045
(\$0.027)
\$0.010

\$0.028

Feasibility Analysis

A DOE CHP TAP Feasibility Analysis usually involves:

- Baseline Energy Analysis
 - Electrical load profiling
 - Thermal load profiling
- CHP Equipment Selection and Sizing
 Matching technology to thermal needs, size, fuel availability, and unique requirements (duct firing, thermal, reliability considerations)
- Analysis Assumptions
 Energy Costs-electric rates and fuel prices
 CHP System Costs-installed equipment costs, O&M, interconnection

Feasibility Analysis, continued

Feasibility Analysis

- Facility Energy Profiles on baseline and CHP Options
- Economic Analysis operating savings, payback/IRR/ROI
- Sensitivity Analysis
- Emissions Analysis
- Recommended Next Steps

Feasibility Analysis

A DOE CHP TAP Feasibility Analysis Usually Involves

- Baseline Energy Analysis
 - Electrical load profiling
 - Thermal load profiling
- CHP Equipment Selection and Sizing
 - Matching technology to thermal needs, size, fuel availability, and unique requirements (duct firing, thermal, reliability considerations)
- Analysis Assumptions
 - Energy Costs electric rates and fuel prices
 - CHP System Costs installed equipment costs, O&M, interconnection

CHP TAP Technical Development Assistance

Screening and Preliminary Analysis

Feasibility Analysis Investment Grade Analysis

Procurement, Operations, Maintenance, Commissioning

Quick screening questions with spreadsheet payback calculator.

Uses available site information.
Estimate: savings, Installation costs, simple paybacks, equipment sizing and type.

3rd Party review of Engineering Analysis. Review equipment sizing and choices.

Review specifications and bids, Limited operational analysis

Getting Started with CHP

Cheryl Eakle

Sustainability Engineer

KPPC

502.852.3485

cheryl.eakle@louisville.edu